If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121x^2-390x+81=0
a = 121; b = -390; c = +81;
Δ = b2-4ac
Δ = -3902-4·121·81
Δ = 112896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{112896}=336$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-390)-336}{2*121}=\frac{54}{242} =27/121 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-390)+336}{2*121}=\frac{726}{242} =3 $
| -4(v-8)=-8v-8 | | 6-9x-4=-1+4x-14 | | 3/5x-2=7 | | 2x-5x^2=4 | | 128=12x | | -5x+7+x1=x-9 | | 4v+=10 | | 3n=3n+3 | | |4v+2|=10 | | 180(n-2)=90 | | −22−5(x+2)=3x | | 6x-35=2x+53 | | (5m-8)(m-8)=0 | | 5t-8t=117 | | w=2/16+12/6 | | -x+16=3x-4-2x+4-x | | 1/5x+6=-4/5x | | 8/16=t/40 | | 6x+3(x+4)=-6 | | 18(8y−1)=2y−14 | | -5-(x+6)=18 | | 5=2n | | 2n^2+161n-159=0 | | -9x-8=-34x+642 | | 27=9(5y-2 | | 5x+0=3x+4 | | 7x+x=4x-(-1) | | -9x+54=0 | | 2x-12+5x-18=180 | | n+15(3)15=101 | | 6x+84=0 | | 757b−52 =6b−57 |